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Weaker signals were seen with other positions. Notably, two
distinct bands were detected with Y274Bpa suggesting two
different Hexim1 × Cdk9 cross-linked species. F208Bpa sub-
stitution showed the strongest cross-link efficiency; the cross-
linked band intensity was close to that of uncross-linked Cdk9
p55 isoform. The same experiment was repeated with another
photoreactive amino acid, Azp (Fig. 2B). Azp is smaller than
Bpa, but the azido group is charged. Again, strong cross-links
were detected with Azp substituting residues between positions
164 and 208 and with Y274Azp. The latter cross-link migrates
faster than with other positions. The major bands detected by
Cdk9 antibodies differ from the major bands detected with
Hexim1 antibodies; however, it should be kept in mind that
Hexim1 might cross-link with itself in dimers or with any of its
numerous identified (or not) protein partners.

To demonstrate that the foregoing cross-links are not lysis
artifacts, live cells were UV-irradiated while still attached to
their Petri dishes and covered with chilled PBS. Flag Hexim1.
Bpa is immunoprecipitated from extracts of cells irradiated alive.
As in cell extracts, Hexim1 F208Bpa provided the strongest
cross-link with Cdk9 (Fig. 2C, lane 4). Cross-links are unde-
tectable with Y225Bpa and F241Bpa. Weak cross-links were
detected with Hexim1 Y167Bpa and Y274Bpa (Fig. 2C, lanes 2
and 10). Like in cell extracts, two Y274Bpa cross-linked species
(lane 10) were seen. The stronger species migrates faster than
other positions. Cross-link profiles obtained with cell extracts
match those of live cells.
Cross-linking in vitro reconstituted P-TEFb.Hexim1.7SK RNA complexes.
The amount of material recovered by immunoprecipitation from
transfected mammalian cells is insufficient for a detailed analysis
of the cross-linked peptides by mass spectrometry; however,
larger amounts of inactive P-TEFb complexes can be recon-
stituted by the addition of recombinant Hexim1 and P-TEFb
and in vitro-transcribed 7SK RNA (20). Microgram amounts of
Hexim1.Bpa are readily purified from bacteria and P-TEFb from
baculovirus-infected cells. The addition of recombinant Larp7
stabilizes 7SK RNA against degradation, which improves the
efficiency and reproducibility of the reconstitution experiments.

We focused on Hexim1 F208Bpa, because this position has
the highest cross-linking efficiency in human cell extracts and
it belongs to an evolutionary-conserved peptide sequence
(202PYNTTQFLM210), the PYNT motif, which was previously
shown to be involved in P-TEFb inhibition (20, 21, 26). P-TEFb
was added to purified F208Bpa Hexim1.Larp7.7SK RNA com-
plex to reconstitute an inactive P-TEFb.Hexim1.Larp7.7SK RNA
complex. UV irradiation generates a protein band (Fig. 3A,
lane 2, band X) with a molecular weight of 130–170 kDa, like
that of the Flag-Hexim1 × Cdk9 cross-linked species described
above obtained from cell lysates. In contrast, UV irradiation has
no effect on purified F208Bpa Hexim1 or on F208Bpa Hexim1
regardless of the presence of the Larp7.7SK RNA complex (Fig.
S1). This experiment was repeated with Hexim1 with Bpa in-
corporated at other positions. Cross-linked species were also
observed but formed with weaker efficiencies. The major bands
obtained after mixing Hexim1 F208Bpa and P-TEFb in the
presence of Larp7.7SK (Fig. 3A, lanes 1 and 2) were excised
from the gel, submitted to double digestion by trypsin and GluC
endopeptidases and analyzed by nano-liquid chromatography
coupled to tandem mass spectrometry (LC-MS/MS) and quan-
tified by MS/MS extracted ion chromatography (XIC). The
highest scores for bands C corresponded to Cdk9, for bands H to
Hexim1, for bands L to Larp7 and for bands T to cyclin T1 (Fig.
3B). Scores for both Cdk9 and Hexim1 increased markedly in
band 2X after irradiation. Actually, both proteins had by far the
highest scores in band 2X. Scores for cyclin T1, Larp7, keratins,
and trypsin in this band were much lower. Thus, we may con-
clude that Hexim1 F208Bpa very efficiently cross-links to Cdk9
in vitro.

Identification of the Cdk9 target peptide of Hexim1 F208Bpa. To identify the
target peptide of Hexim1 F208Bpa, we ranked more than 100
double-digested peptides attributed to Cdk9 or to Hexim1 according
to the number of validated peptide sequence matches (PSMs).
Analysis of un–cross-linked Hexim1 from band 1H (Dataset S1)
showed that the Hexim1 peptide containing Bpa (B, underscored)
replacing F208, GQPVAPYNTTQBLMDDHDQEEPDK, had the
second-highest number (Fig. 3C, blue histogram). In contrast, this
peptide was hardly detected in the cross-linked band 2X (Dataset
S2) (Fig. 3C, red histogram). Such a decrease was expected because
Bpa forms a covalent bond with another peptide, thereby generating
a new peptide shared by the cross-linked proteins. We also found
that the VVTLWYRPPELLLGER Cdk9 peptide was ranked sev-
enth in the number of validated matches in band C corresponding to
un–cross-linked Cdk9 (Dataset S3) (Fig. 3D, blue histogram). In
contrast, this peptide was hardly detected in band 2X (Dataset S2)
(Fig. 3D, red histogram).

We repeated this experiment several times independently with
samples from other reconstitution experiments, and found sim-
ilar results (Fig. S1). Both the Hexim1 Bpa-containing peptide
GQPVAPYNTTQBLMDDHDQEEPDK and the VVTLWYRP-
PELLLGER Cdk9 peptide disappear from gel bands digested by
trypsin alone; thus, we conclude that the VVTLWYRPPELLLGER
Cdk9 peptide cross-links to Hexim1 F208Bpa.
Hexim1 cross-links with a tryptophan residue located in the catalytic cleft
of Cdk9. Three-dimensional structures of Cdk9 bound to cyclin
T1 have been determined by X-ray crystallography (40, 41). The
189VVTLWYRPPELLLGER204 peptide borders the catalytic cleft
(Fig. 4A, yellow) that binds ATP (red) and the catalytic magne-
sium atom (black sphere). It overlaps with the activation segment
(residues 167–198) that controls the accessibility of substrates to
the catalytic cleft (40, 42).
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Fig. 3. Mass spectrometry analysis of cross-linked in vitro reconstituted
P-TEFb.Hexim1 F208Bpa.7SK complexes. (A) In vitro-reconstituted P-TEFb.
Hexim1 208Bpa.Larp7.7SK complexes, both UV-irradiated (lane 2) and not
(lane 1). Polyacrylamide gels were stained by Coomassie blue. (B) Histograms
of MS/MS-peak XIC scores obtained from double-digested (trypsin and GluC
V8 endopeptidase) gel bands. (C) Histograms of the top-seven validated
PSMs for Hexim1 from band 1H (blue) or band 2X (red). (D) Histograms of
the top-seven validated PSMs for Cdk9 peptides from band 1H (blue) or band
2X (red). Sequences of different charges or modification state but the same
mass were averaged together over three LC-MS/MS runs. Lists of validated
peptides are provided in Datasets S1–S3.
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complexes. Reciprocally, replacing a tryptophan in this peptide
with a photoreactive amino acid also allowed photocross-linking
of Cdk9 to Hexim1. Phenylalanine F208 belongs to the PYNT
sequence (201APYNTTQFL209), the most evolutionary conserved
motif among Hexim proteins (16). This hydrophobic sequence has
long been known to play an important role in the inhibition
of P-TEFb (19–21). Hexim1 mutations in the PYNT sequence,
P202S, T205D, F208D, and F208K prevented the formation of
P-TEFb.Hexim1.7SK complexes in human cells (Fig. S2). The
F208A mutation was of little consequence, but replacement of
F208 by Bpa decreased the efficiency in P-TEFb coprecipitation
(Fig. 1B, lane 6). Because Bpa is bulkier than phenylalanine, it has
been suggested that F208 is positioned within a small hydropho-
bic pocket between Cdk9 and Hexim1. Importantly, truncated
Hexim1 molecules lacking their N-terminal sequence up to V200
were found to efficiently inhibit P-TEFb in an in vitro kinase assay
(26), whereas truncated Hexim1 molecules lacking their N-terminal
sequence up to Q207 do not inhibit P-TEFb. Seven residues, in-
cluding the PYNT motif, make all of the difference.

Proteins containing the PYNT sequence, the cyclin T-binding
domain, and the AR but not the BR do not require 7SK RNA for
complete inhibition (26). In contrast, P-TEFb inhibition by the FL
Hexim1 protein, with both the AR and the BR, has an absolute
requirement for 7SK RNA. Both regions might interact electro-
statically with each other to prevent Hexim1 binding to P-TEFb
(45) (Fig. 5A). Spatial proximity between the AR and BR is
supported by the likely interactions between the 7SK G42AUC45//
G64AUC67 repeated motif and the BR (46) and between 7SK
uridine U30 and a Hexim1 sequence from amino acids 210–220 in
the AR (47). 7SK RNA binding to the BR might neutralize its
positive charges and consequently release its interaction with the
AR, thereby unmasking a Cdk9-binding domain (Fig. 5B).

Efficient formation of cross-links with Hexim1 F208Bpa or
Cdk9 W193Bpa indicates that Hexim1 F208 in the PYNT se-
quence is in very close contact with Cdk9.Hexim1 F208Bpa cross-
links to the 189VVTLWYRPPELLLGER204 CDK9 peptide (Fig.
4B, yellow chain) that borders the catalytic site. Most importantly,
replacing Cdk9 W193 by Bpa in this sequence leads to efficient
cross-linking of Cdk9 to Hexim1; thus, Cdk9 W193 is in very close
contact with Hexim1. The 189VVTLWYRPPELLLGER204 Cdk9
peptide overlaps the activation segment (from D167 to E198)
that controls access to the catalytic site; thus, Hexim1 is in close
contact with Cdk9 peptide segment controlling its kinase ac-
tivity. Such contact between Hexim1 and the Cdk9 activation
segment accounts for its inhibition. Importantly, phosphoryla-
tion of S175 and T186 in the “T-loop” is required for P-TEFb
assembly with Hexim1 and 7SK RNA (21, 48, 49). Like Hexim1,
the HIV viral protein Tat interacts mainly with cyclin T1 and is
known to compete with Hexim1 for association with P-TEFb
(5, 22). Tat also contacts the T-loop within the activation seg-
ment of Cdk9, and this contact induces a significant conforma-
tional change in Cdk9, modifying its substrate-binding surface
(41); however, in contrast to Hexim1, Tat enhances the catalytic
potential of Cdk9.

The 3D structure of Cdk2 bound to its inhibitors or substrates
underlines the importance of the substrate-binding surface for
Cdk9 inhibition by Hexim1. Indeed, the 3D structure of the
Cdk2 catalytic site is highly similar to that of Cdk9 (Fig. 4C). The
189VVTLWYRPPELLLGER204 Cdk9 peptide (Fig. 4B, yellow
chain) is a homolog of the 163VVTLWYRAPILLGCK178 Cdk2
peptide (Fig. 4C, yellow chain). Thus, Cdk2 W167 is the ho-
molog of Cdk9 W193 (Fig. 4C, in magenta). These large aro-
matic hydrophobic residues are located at an extremity of the
activation segments and exposed to the solvent. Importantly,
the 163VVTLW167 Cdk2 peptide is in close contact with the
HHASPRK model peptide substrate of Cdk2 (42) (Fig. 4E, in
green). Of note, the peptidic hydrogen atom on the alpha carbon
of the first histidine is engaged in a Pi-hydrogen bond with Cdk2

W167. By analogy, Cdk9 W193 would be expected to be in close
contact with peptide substrates. Inhibition of Cdk2 by p27Kip

involves an overlap and block of the ATP-binding site by a p27Kip

peptide chain (Fig. 4D). Given that Cdk9 W193 is 15 Å away
from the catalytic Mg2+ ion, inhibition of Cdk9 by Hexim1 may
follow a different pathway. We propose that the evolutionary
conserved Hexim1 PYNT sequence interferes with substrate
binding to Cdk9 to inhibit its kinase activity.

Methods
Cross-Linking in Live Mammalian Cells or Lysates, and Immunoprecipitation.
HEK 293 cells were cotransfected with polyethyleneimine (Polysciences)
with Bst-Yam suppressor tRNA plasmid, a plasmid coding for either Bpa-tRNA
or Azp-tRNA synthetase (38), and mutated derivatives of pAdRSV-Flag-
Hexim1 (5) or pCDNA-3myc-Cdk9 (a gift from Shona Murphy, Sir William
Dunn School of Pathology, Oxford) providing N-terminal tagged proteins. At
4 h after transfection, Bpa (IRIS Biotech) or Azp (IRIS Biotech) (0.8 M stock
solutions in 1 M NaOH) was added to culture media at a final concentration
of 2 mM. Cells were lysed at 48 h after transfection in chilled HKM200 buffer
(10 mM Hepes pH 7.9, 10 mM KCl, 1.5 mM MgCl2, and 200 mM NaCl ) with
protease inhibitor mixture (Sigma-Aldrich) and 0.5% Igepal (Sigma-Aldrich).
Clarified cell lysates (centrifuged at 20,000 × g) were irradiated on ice in a
Petri dish at 365 nm for 45 min (4 J/cm2). Alternatively, live cells were irra-
diated while still attached to their 15-cm Petri dish under a 1 mM solution of
glucose in chilled PBS. Lysis then proceeded as above.

Proteins were immunoprecipitated on anti-Flag M2 agarose beads (Sigma-
Aldrich) or on protein G- coated Dynabeads after the addition of anti-myc
9E10 monoclonal antibody (Santa Cruz Biotechnology). Rabbit polyclonal
antibodies N2 and C4 were made against Hexim1 N-terminal and C-terminal
peptides, respectively. Anti-Cdk9 (C-20) and cyclin T1 (H-245) were obtained
from Santa Cruz Biotechnology.

Reagents for Reconstitution Experiments. Recombinant Hexim1.Bpa was made
in BL21 cotransfected with pET-Hexim1-C-StrepT and p3tRNA.BpARS (50).
pET-Hexim1-C-StrepT was derived from pET21-Hexim1 (20) by replacing the
C-terminal His tag with a C-terminal streptavidin tag, and amber stop codons
were introduced by targeted mutagenesis. Bacteria induced overnight by
isopropyl β-D-1-thiogalactopyranoside (IPTG) at 23 °C in the presence of
1 mM Bpa were pelleted and then sonicated on ice in TNE100 buffer
(100 mM Tris·HCl pH 8.0, 150 mM NaCl, 1 mM EDTA, and 1.4 mM mercap-
toethanol). Strep-tagged Hexim1.Bpa proteins were retained on Strep Tactin
beads (IBA). Desthiobiotin (Sigma-Aldrich) eluates were fractionated with
an AKTA purifier 10 fitted with a Superdex 200 10/300 GL column (GE
Healthcare) and equilibrated in HKM500 buffer (500 mM NaCl). Fractions
corresponding to Hexim dimers were used. Recombinant Larp7 was made
from pnEA-HV-Cter-larp7-FL.

Bacteria induced overnight by IPTG at 23 °C were pelleted and sonicated
on ice in TNE100 buffer. His-tagged Larp7 was retained on nickel agarose
beads and eluted with 300 mM imidazole. The histidine tag was removed by
overnight tobacco etch virus proteolysis. The resulting protein was purified
further on a heparin column eluted with a 0–350 mM NaCl gradient in
20 mM Hepes pH 7.2 and 2 mM DTT. To obtain P-TEFb, Cdk9 cDNA fused to
an N-terminal strep tag and full-length cyclin T1 cDNA were cloned into a
PKL MultiBac vector, under the control of polyhedrin and p10 promoters
(51). Sf21-infected cells were pelleted at 48 h postinfection and then lysed by
sonication on ice in 20 mM Hepes pH 7.5, 250 mM NaCl, and 1 mM DTT with
protease inhibitors (Sigma-Aldrich P8340). The lysate was clarified by cen-
trifugation at 14,000 × g for 30 min. P-TEFb retained on Strep-Tactin
Sepharose beads (IBA) was eluted with 2.5 mM desthiobiotin. 7SK RNA was
prepared by T7 polymerase in vitro transcription (52).
In vitro P-TEFb.Hexim1.7SK RNA complex reconstitution and cross-linking. P-TEFb.
Hexim1.7SK RNA reconstitution was adapted from a previously published
procedure (20). Larp7 was added first to 7SK RNA that had been denatured
at 95 °C and renatured at 4 °C in 200 mM cacodylate pH 6.5, 40 mM MCl2,
and 10 mM EDTA. All reagents were subsequently equilibrated in HKM150
buffer (150 mM NaCl) using Microspin G-50 columns (GE Healthcare). The
Larp7.7SK RNA was then added to an excess of Hexim1.Bpa. P-TEFb was
added last. The mixture was left for 30 min at room temperature. Irradiation
was performed on ice for 45 min at 365 nm (4 J/cm2).
LC-MS/MS. Reconstituted P-TEFb.HEXIM1.7SK RNA complexes, cross-linked or
not, were adsorbed on Strep-Tactin beads. SDS/PAGE was stained with
Coomassie brilliant blue. Bands of interest were cut off, alkylatedwith 55mM
iodoacetamide after reduction with 10 mM DTT, and then digested se-
quentially in PBS using 10 ng/μL endoproteinase GluC (Roche), followed by
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40 ng/μL sequencing-grade trypsin (Promega Gold). For Fig. S1 B–D, the
endoproteinase GluC digestion step was omitted. Proteolytic peptides were
separated on a Thermo Fisher Scientific U3000 RSLC system fitted with a C18
column (75 μm i.d. × 50 cm long) and coupled to a Q Exactive Quadrupole-
Orbitrap mass spectrometer (Thermo Fisher Scientific).

Data acquisition involved a top-10 experimental design. Each full-scan
MS (range, 400–2,000 m/z; resolution, 70,000) is followed by 10 higher-
energy collisional dissociation MS/MS on the 10 most intense species
(resolution, 17,500) with dynamic exclusion. Mascot Server 2.5.1 (Matrix
Science) and SwissProt (2016-06 551385 sequences) were used for database
searches and quantitation by the Exponentially Modified Protein Abun-
dance Index (emPAI) or SEQUEST HT (Thermo Fisher Scientific) Proteome
Discoverer 2.1 for precursor area calculation (XIC label-free quantitation),
with up to six miscleavages, carbamidomethylation on Cys, oxidation
on Met, deamidation on Asn and Gln, and replacement of Y or F by Bpa
included as variable modifications. Mass tolerances were 10 ppm for

proteolytic peptides and 20 mDa for peptide fragments. Results were
filtered on human taxonomy.
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